Online Learning for Wireless Distributed Computing

9 Nov 2016  ·  Yi-Hsuan Kao, Kwame Wright, Bhaskar Krishnamachari, Fan Bai ·

There has been a growing interest for Wireless Distributed Computing (WDC), which leverages collaborative computing over multiple wireless devices. WDC enables complex applications that a single device cannot support individually. However, the problem of assigning tasks over multiple devices becomes challenging in the dynamic environments encountered in real-world settings, considering that the resource availability and channel conditions change over time in unpredictable ways due to mobility and other factors. In this paper, we formulate a task assignment problem as an online learning problem using an adversarial multi-armed bandit framework. We propose MABSTA, a novel online learning algorithm that learns the performance of unknown devices and channel qualities continually through exploratory probing and makes task assignment decisions by exploiting the gained knowledge. For maximal adaptability, MABSTA is designed to make no stochastic assumption about the environment. We analyze it mathematically and provide a worst-case performance guarantee for any dynamic environment. We also compare it with the optimal offline policy as well as other baselines via emulations on trace-data obtained from a wireless IoT testbed, and show that it offers competitive and robust performance in all cases. To the best of our knowledge, MABSTA is the first online algorithm in this domain of task assignment problems and provides provable performance guarantee.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here