Online Learning of Weakly Coupled MDP Policies for Load Balancing and Auto Scaling

Load balancing and auto scaling are at the core of scalable, contemporary systems, addressing dynamic resource allocation and service rate adjustments in response to workload changes. This paper introduces a novel model and algorithms for tuning load balancers coupled with auto scalers, considering bursty traffic arriving at finite queues. We begin by presenting the problem as a weakly coupled Markov Decision Processes (MDP), solvable via a linear program (LP). However, as the number of control variables of such LP grows combinatorially, we introduce a more tractable relaxed LP formulation, and extend it to tackle the problem of online parameter learning and policy optimization using a two-timescale algorithm based on the LP Lagrangian.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here