Online Strongly Convex Optimization with Unknown Delays

21 Mar 2021  ·  Yuanyu Wan, Wei-Wei Tu, Lijun Zhang ·

We investigate the problem of online convex optimization with unknown delays, in which the feedback of a decision arrives with an arbitrary delay. Previous studies have presented a delayed variant of online gradient descent (OGD), and achieved the regret bound of $O(\sqrt{T+D})$ by only utilizing the convexity condition, where $D$ is the sum of delays over $T$ rounds. In this paper, we further exploit the strong convexity to improve the regret bound. Specifically, we first extend the delayed variant of OGD for strongly convex functions, and establish a better regret bound of $O(d\log T)$, where $d$ is the maximum delay. The essential idea is to let the learning rate decay with the total number of received feedback linearly. Furthermore, we consider the more challenging bandit setting, and obtain similar theoretical guarantees by incorporating the classical multi-point gradient estimator into our extended method. To the best of our knowledge, this is the first work that solves online strongly convex optimization under the general delayed setting.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here