Online-Within-Online Meta-Learning

We study the problem of learning a series of tasks in a fully online Meta-Learning setting. The goal is to exploit similarities among the tasks to incrementally adapt an inner online algorithm in order to incur a low averaged cumulative error over the tasks. We focus on a family of inner algorithms based on a parametrized variant of online Mirror Descent. The inner algorithm is incrementally adapted by an online Mirror Descent meta-algorithm using the corresponding within-task minimum regularized empirical risk as the meta-loss. In order to keep the process fully online, we approximate the meta-subgradients by the online inner algorithm. An upper bound on the approximation error allows us to derive a cumulative error bound for the proposed method. Our analysis can also be converted to the statistical setting by online-to-batch arguments. We instantiate two examples of the framework in which the meta-parameter is either a common bias vector or feature map. Finally, preliminary numerical experiments confirm our theoretical findings.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here