Open-Access Data and Toolbox for Tracking COVID-19 Impact on Power Systems

10 Dec 2021  ·  Guangchun Ruan, Zekuan Yu, Shutong Pu, Songtao Zhou, Haiwang Zhong, Le Xie, Qing Xia, Chongqing Kang ·

Intervention policies against COVID-19 have caused large-scale disruptions globally, and led to a series of pattern changes in the power system operation. Analyzing these pandemic-induced patterns is imperative to identify the potential risks and impacts of this extreme event. With this purpose, we developed an open-access data hub (COVID-EMDA+), an open-source toolbox (CoVEMDA), and a few evaluation methods to explore what the U.S. power systems are experiencing during COVID-19. These resources could be broadly used for research, public policy, and educational purposes. Technically, our data hub harmonizes a variety of raw data such as generation mix, demand profiles, electricity price, weather observations, mobility, confirmed cases and deaths. Typical methods are reformulated and standardized in our toolbox, including baseline estimation, regression analysis, and scientific visualization. Here the fluctuation index and probabilistic baseline are proposed for the first time to consider data fluctuation and estimation uncertainty. Based on these, we conduct three empirical studies on the U.S. power systems, and share new solutions and unexpected findings to address the issues of public concerns. This conveys a more complete picture of the pandemic's impacts, and also opens up several attractive topics for future work. Python, Matlab source codes, and user manuals are all publicly shared on a Github repository.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here