Open-Domain Dialog Evaluation using Follow-Ups Likelihood
Automatic evaluation of open-domain dialogs remains an unsolved problem. Moreover, existing methods do not correlate strongly with human annotations. This paper presents a new automated evaluation method using follow-ups: we measure the probability that a language model will continue the conversation with a fixed set of follow-ups (e.g., not really relevant here, what are you trying to say). When compared against twelve existing methods, our new evaluation achieves the highest correlation with human evaluations.
PDF Abstract COLING 2022 PDF COLING 2022 AbstractDatasets
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here