Optical Adversarial Attack

13 Aug 2021  ·  Abhiram Gnanasambandam, Alex M. Sherman, Stanley H. Chan ·

We introduce OPtical ADversarial attack (OPAD). OPAD is an adversarial attack in the physical space aiming to fool image classifiers without physically touching the objects (e.g., moving or painting the objects). The principle of OPAD is to use structured illumination to alter the appearance of the target objects. The system consists of a low-cost projector, a camera, and a computer. The challenge of the problem is the non-linearity of the radiometric response of the projector and the spatially varying spectral response of the scene. Attacks generated in a conventional approach do not work in this setting unless they are calibrated to compensate for such a projector-camera model. The proposed solution incorporates the projector-camera model into the adversarial attack optimization, where a new attack formulation is derived. Experimental results prove the validity of the solution. It is demonstrated that OPAD can optically attack a real 3D object in the presence of background lighting for white-box, black-box, targeted, and untargeted attacks. Theoretical analysis is presented to quantify the fundamental performance limit of the system.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here