Paper

Optimal Adaptive Learning in Uncontrolled Restless Bandit Problems

In this paper we consider the problem of learning the optimal policy for uncontrolled restless bandit problems. In an uncontrolled restless bandit problem, there is a finite set of arms, each of which when pulled yields a positive reward. There is a player who sequentially selects one of the arms at each time step. The goal of the player is to maximize its undiscounted reward over a time horizon T. The reward process of each arm is a finite state Markov chain, whose transition probabilities are unknown by the player. State transitions of each arm is independent of the selection of the player. We propose a learning algorithm with logarithmic regret uniformly over time with respect to the optimal finite horizon policy. Our results extend the optimal adaptive learning of MDPs to POMDPs.

Results in Papers With Code
(↓ scroll down to see all results)