Optimal Algorithms for Submodular Maximization with Distributed Constraints

30 Sep 2019  ·  Alexander Robey, Arman Adibi, Brent Schlotfeldt, George J. Pappas, Hamed Hassani ·

We consider a class of discrete optimization problems that aim to maximize a submodular objective function subject to a distributed partition matroid constraint. More precisely, we consider a networked scenario in which multiple agents choose actions from local strategy sets with the goal of maximizing a submodular objective function defined over the set of all possible actions. Given this distributed setting, we develop Constraint-Distributed Continuous Greedy (CDCG), a message passing algorithm that converges to the tight $(1-1/e)$ approximation factor of the optimum global solution using only local computation and communication. It is known that a sequential greedy algorithm can only achieve a $1/2$ multiplicative approximation of the optimal solution for this class of problems in the distributed setting. Our framework relies on lifting the discrete problem to a continuous domain and developing a consensus algorithm that achieves the tight $(1-1/e)$ approximation guarantee of the global discrete solution once a proper rounding scheme is applied. We also offer empirical results from a multi-agent area coverage problem to show that the proposed method significantly outperforms the state-of-the-art sequential greedy method.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here