Optimal CUR Matrix Decompositions

30 May 2014  ·  Christos Boutsidis, David P. Woodruff ·

The CUR decomposition of an $m \times n$ matrix $A$ finds an $m \times c$ matrix $C$ with a subset of $c < n$ columns of $A,$ together with an $r \times n$ matrix $R$ with a subset of $r < m$ rows of $A,$ as well as a $c \times r$ low-rank matrix $U$ such that the matrix $C U R$ approximates the matrix $A,$ that is, $ || A - CUR ||_F^2 \le (1+\epsilon) || A - A_k||_F^2$, where $||.||_F$ denotes the Frobenius norm and $A_k$ is the best $m \times n$ matrix of rank $k$ constructed via the SVD. We present input-sparsity-time and deterministic algorithms for constructing such a CUR decomposition where $c=O(k/\epsilon)$ and $r=O(k/\epsilon)$ and rank$(U) = k$. Up to constant factors, our algorithms are simultaneously optimal in $c, r,$ and rank$(U)$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here