Optimal decision-making with time-varying evidence reliability

Previous theoretical and experimental work on optimal decision-making was restricted to the artificial setting of a reliability of the momentary sensory evidence that remained constant within single trials. The work presented here describes the computation and characterization of optimal decision-making in the more realistic case of an evidence reliability that varies across time even within a trial. It shows that, in this case, the optimal behavior is determined by a bound in the decision maker's belief that depends only on the current, but not the past, reliability. We furthermore demonstrate that simpler heuristics fail to match the optimal performance for certain characteristics of the process that determines the time-course of this reliability, causing a drop in reward rate by more than 50%.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here