Optimal Low-Degree Hardness of Maximum Independent Set

13 Oct 2020  ·  Alexander S. Wein ·

We study the algorithmic task of finding a large independent set in a sparse Erd\H{o}s-R\'{e}nyi random graph with $n$ vertices and average degree $d$. The maximum independent set is known to have size $(2 \log d / d)n$ in the double limit $n \to \infty$ followed by $d \to \infty$, but the best known polynomial-time algorithms can only find an independent set of half-optimal size $(\log d / d)n$. We show that the class of low-degree polynomial algorithms can find independent sets of half-optimal size but no larger, improving upon a result of Gamarnik, Jagannath, and the author. This generalizes earlier work by Rahman and Vir\'ag, which proved the analogous result for the weaker class of local algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here