Beyond Time-Average Convergence: Near-Optimal Uncoupled Online Learning via Clairvoyant Multiplicative Weights Update

29 Nov 2021  ·  Georgios Piliouras, Ryann Sim, Stratis Skoulakis ·

In this paper, we provide a novel and simple algorithm, Clairvoyant Multiplicative Weights Updates (CMWU) for regret minimization in general games. CMWU effectively corresponds to the standard MWU algorithm but where all agents, when updating their mixed strategies, use the payoff profiles based on tomorrow's behavior, i.e. the agents are clairvoyant. CMWU achieves constant regret of $\ln(m)/\eta$ in all normal-form games with m actions and fixed step-sizes $\eta$. Although CMWU encodes in its definition a fixed point computation, which in principle could result in dynamics that are neither computationally efficient nor uncoupled, we show that both of these issues can be largely circumvented. Specifically, as long as the step-size $\eta$ is upper bounded by $\frac{1}{(n-1)V}$, where $n$ is the number of agents and $[0,V]$ is the payoff range, then the CMWU updates can be computed linearly fast via a contraction map. This implementation results in an uncoupled online learning dynamic that admits a $O (\log T)$-sparse sub-sequence where each agent experiences at most $O(nV\log m)$ regret. This implies that the CMWU dynamics converge with rate $O(nV \log m \log T / T)$ to a \textit{Coarse Correlated Equilibrium}. The latter improves on the current state-of-the-art convergence rate of \textit{uncoupled online learning dynamics} \cite{daskalakis2021near,anagnostides2021near}.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here