Optimal oracle inequalities for solving projected fixed-point equations

9 Dec 2020  ·  Wenlong Mou, Ashwin Pananjady, Martin J. Wainwright ·

Linear fixed point equations in Hilbert spaces arise in a variety of settings, including reinforcement learning, and computational methods for solving differential and integral equations. We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space. First, we prove an instance-dependent upper bound on the mean-squared error for a linear stochastic approximation scheme that exploits Polyak--Ruppert averaging. This bound consists of two terms: an approximation error term with an instance-dependent approximation factor, and a statistical error term that captures the instance-specific complexity of the noise when projected onto the low-dimensional subspace. Using information theoretic methods, we also establish lower bounds showing that both of these terms cannot be improved, again in an instance-dependent sense. A concrete consequence of our characterization is that the optimal approximation factor in this problem can be much larger than a universal constant. We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation, establishing their optimality.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here