Optimal rates for zero-order convex optimization: the power of two function evaluations

7 Dec 2013  ·  John C. Duchi, Michael I. Jordan, Martin J. Wainwright, Andre Wibisono ·

We consider derivative-free algorithms for stochastic and non-stochastic convex optimization problems that use only function values rather than gradients. Focusing on non-asymptotic bounds on convergence rates, we show that if pairs of function values are available, algorithms for $d$-dimensional optimization that use gradient estimates based on random perturbations suffer a factor of at most $\sqrt{d}$ in convergence rate over traditional stochastic gradient methods... We establish such results for both smooth and non-smooth cases, sharpening previous analyses that suggested a worse dimension dependence, and extend our results to the case of multiple ($m \ge 2$) evaluations. We complement our algorithmic development with information-theoretic lower bounds on the minimax convergence rate of such problems, establishing the sharpness of our achievable results up to constant (sometimes logarithmic) factors. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here