Optimal Sensor Placement for Source Localization: A Unified ADMM Approach

8 Sep 2021  ·  Nitesh Sahu, Linlong Wu, Prabhu Babu, Bhavani Shankar M. R., Björn Ottersten ·

Source localization plays a key role in many applications including radar, wireless and underwater communications. Among various localization methods, the most popular ones are Time-Of-Arrival (TOA), Time-Difference-Of-Arrival (TDOA), and Received Signal Strength (RSS) based. Since the Cram\'{e}r-Rao lower bounds (CRLB) of these methods depend on the sensor geometry explicitly, sensor placement becomes a crucial issue in source localization applications. In this paper, we consider finding the optimal sensor placements for the TOA, TDOA and RSS based localization scenarios. We first unify the three localization models by a generalized problem formulation based on the CRLB-related metric. Then a unified optimization framework for optimal sensor placement (UTMOST) is developed through the combination of the alternating direction method of multipliers (ADMM) and majorization-minimization (MM) techniques. Unlike the majority of the state-of-the-art works, the proposed UTMOST neither approximates the design criterion nor considers only uncorrelated noise in the measurements. It can readily adapt to to different design criteria (i.e. A, D and E-optimality) with slight modifications within the framework and yield the optimal sensor placements correspondingly. Extensive numerical experiments are performed to exhibit the efficacy and flexibility of the proposed framework.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here