Optimising the topological information of the $A_\infty$-persistence groups

19 Jun 2017  ·  Francisco Belchí ·

Persistent homology typically studies the evolution of homology groups $H_p(X)$ (with coefficients in a field) along a filtration of topological spaces. $A_\infty$-persistence extends this theory by analysing the evolution of subspaces such as $V := \text{Ker}\, {\Delta_n}_{| H_p(X)} \subseteq H_p(X)$, where $\{\Delta_m\}_{m\geq1}$ denotes a structure of $A_\infty$-coalgebra on $H_*(X)$... In this paper we illustrate how $A_\infty$-persistence can be useful beyond persistent homology by discussing the topological meaning of $V$, which is the most basic form of $A_\infty$-persistence group. In addition, we explore how to choose $A_\infty$-coalgebras along a filtration to make the $A_\infty$-persistence groups carry more faithful information. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here