Optimistic Proximal Policy Optimization

25 Jun 2019  ·  Takahisa Imagawa, Takuya Hiraoka, Yoshimasa Tsuruoka ·

Reinforcement Learning, a machine learning framework for training an autonomous agent based on rewards, has shown outstanding results in various domains. However, it is known that learning a good policy is difficult in a domain where rewards are rare. We propose a method, optimistic proximal policy optimization (OPPO) to alleviate this difficulty. OPPO considers the uncertainty of the estimated total return and optimistically evaluates the policy based on that amount. We show that OPPO outperforms the existing methods in a tabular task.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here