Optimization Design of Decentralized Control for Complex Decentralized Systems

3 Sep 2018  ·  Ying Huang, Jiyang Dai, Chen Peng ·

A new method is developed to deal with the problem that a complex decentralized control system needs to keep centralized control performance. The systematic procedure emphasizes quickly finding the decentralized subcontrollers that matching the closed-loop performance and robustness characteristics of the centralized controller, which is featured by the fact that GA is used to optimize the design of centralized H-infinity controller K(s) and decentralized engine subcontroller KT(s), and that only one interface variable needs to satisfy decentralized control system requirement according to the proposed selection principle. The optimization design is motivated by the implementation issues where it is desirable to reduce the time in trial and error process and accurately find the best decentralized subcontrollers. The method is applied to decentralized control system design for a short takeoff and landing fighter. By comparing the simulation results of the decentralized control system with those of the centralized control system, the target of the decentralized control attains the performance and robustness of centralized control is validated.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here