Optimization of Graph Total Variation via Active-Set-based Combinatorial Reconditioning

27 Feb 2020  ·  Zhenzhang Ye, Thomas Möllenhoff, Tao Wu, Daniel Cremers ·

Structured convex optimization on weighted graphs finds numerous applications in machine learning and computer vision. In this work, we propose a novel adaptive preconditioning strategy for proximal algorithms on this problem class. Our preconditioner is driven by a sharp analysis of the local linear convergence rate depending on the "active set" at the current iterate. We show that nested-forest decomposition of the inactive edges yields a guaranteed local linear convergence rate. Further, we propose a practical greedy heuristic which realizes such nested decompositions and show in several numerical experiments that our reconditioning strategy, when applied to proximal gradient or primal-dual hybrid gradient algorithm, achieves competitive performances. Our results suggest that local convergence analysis can serve as a guideline for selecting variable metrics in proximal algorithms.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here