Paper

Optimization on Product Submanifolds of Convolution Kernels

Recent advances in optimization methods used for training convolutional neural networks (CNNs) with kernels, which are normalized according to particular constraints, have shown remarkable success. This work introduces an approach for training CNNs using ensembles of joint spaces of kernels constructed using different constraints. For this purpose, we address a problem of optimization on ensembles of products of submanifolds (PEMs) of convolution kernels. To this end, we first propose three strategies to construct ensembles of PEMs in CNNs. Next, we expound their geometric properties (metric and curvature properties) in CNNs. We make use of our theoretical results by developing a geometry-aware SGD algorithm (G-SGD) for optimization on ensembles of PEMs to train CNNs. Moreover, we analyze convergence properties of G-SGD considering geometric properties of PEMs. In the experimental analyses, we employ G-SGD to train CNNs on Cifar-10, Cifar-100 and Imagenet datasets. The results show that geometric adaptive step size computation methods of G-SGD can improve training loss and convergence properties of CNNs. Moreover, we observe that classification performance of baseline CNNs can be boosted using G-SGD on ensembles of PEMs identified by multiple constraints.

Results in Papers With Code
(↓ scroll down to see all results)