First-Order Optimization Inspired from Finite-Time Convergent Flows

6 Oct 2020  ·  Siqi Zhang, Mouhacine Benosman, Orlando Romero, Anoop Cherian ·

In this paper, we investigate the performance of two first-order optimization algorithms, obtained from forward Euler discretization of finite-time optimization flows. These flows are the rescaled-gradient flow (RGF) and the signed-gradient flow (SGF), and consist of non-Lipscthiz or discontinuous dynamical systems that converge locally in finite time to the minima of gradient-dominated functions. We propose an Euler discretization for these first-order finite-time flows, and provide convergence guarantees, in the deterministic and the stochastic setting. We then apply the proposed algorithms to academic examples, as well as deep neural networks training, where we empirically test their performances on the SVHN dataset. Our results show that our schemes demonstrate faster convergences against standard optimization alternatives.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here