OptMSM: Optimizing Multi-Scenario Modeling for Click-Through Rate Prediction

23 Jun 2023  ·  Xing Tang, Yang Qiao, Yuwen Fu, Fuyuan Lyu, Dugang Liu, Xiuqiang He ·

A large-scale industrial recommendation platform typically consists of multiple associated scenarios, requiring a unified click-through rate (CTR) prediction model to serve them simultaneously. Existing approaches for multi-scenario CTR prediction generally consist of two main modules: i) a scenario-aware learning module that learns a set of multi-functional representations with scenario-shared and scenario-specific information from input features, and ii) a scenario-specific prediction module that serves each scenario based on these representations. However, most of these approaches primarily focus on improving the former module and neglect the latter module. This can result in challenges such as increased model parameter size, training difficulty, and performance bottlenecks for each scenario. To address these issues, we propose a novel framework called OptMSM (\textbf{Opt}imizing \textbf{M}ulti-\textbf{S}cenario \textbf{M}odeling). First, we introduce a simplified yet effective scenario-enhanced learning module to alleviate the aforementioned challenges. Specifically, we partition the input features into scenario-specific and scenario-shared features, which are mapped to specific information embedding encodings and a set of shared information embeddings, respectively. By imposing an orthogonality constraint on the shared information embeddings to facilitate the disentanglement of shared information corresponding to each scenario, we combine them with the specific information embeddings to obtain multi-functional representations. Second, we introduce a scenario-specific hypernetwork in the scenario-specific prediction module to capture interactions within each scenario more effectively, thereby alleviating the performance bottlenecks. Finally, we conduct extensive offline experiments and an online A/B test to demonstrate the effectiveness of OptMSM.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods