Opytimizer: A Nature-Inspired Python Optimizer

30 Dec 2019 Gustavo H. de Rosa João P. Papa

Optimization aims at selecting a feasible set of parameters in an attempt to solve a particular problem, being applied in a wide range of applications, such as operations research, machine learning fine-tuning, and control engineering, among others. Nevertheless, traditional iterative optimization methods use the evaluation of gradients and Hessians to find their solutions, not being practical due to their computational burden and when working with non-convex functions... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet