Orthogonal NMF through Subspace Exploration

NeurIPS 2015 Megasthenis AsterisDimitris PapailiopoulosAlexandros G. Dimakis

Orthogonal Nonnegative Matrix Factorization {(ONMF)} aims to approximate a nonnegative matrix as the product of two $k$-dimensional nonnegative factors, one of which has orthonormal columns. It yields potentially useful data representations as superposition of disjoint parts, while it has been shown to work well for clustering tasks where traditional methods underperform... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet