Distance metric learning (DML), which learns a distance metric from labeled "similar" and "dissimilar" data pairs, is widely utilized. Recently, several works investigate orthogonality-promoting regularization (OPR), which encourages the projection vectors in DML to be close to being orthogonal, to achieve three effects: (1) high balancedness -- achieving comparable performance on both frequent and infrequent classes; (2) high compactness -- using a small number of projection vectors to achieve a "good" metric; (3) good generalizability -- alleviating overfitting to training data... (read more)
PDF Abstract ICML 2018 PDF ICML 2018 AbstractMETHOD | TYPE | |
---|---|---|
🤖 No Methods Found | Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet |