Outcome-Oriented Predictive Process Monitoring: Review and Benchmark

21 Jul 2017  ·  Irene Teinemaa, Marlon Dumas, Marcello La Rosa, Fabrizio Maria Maggi ·

Predictive business process monitoring refers to the act of making predictions about the future state of ongoing cases of a business process, based on their incomplete execution traces and logs of historical (completed) traces. Motivated by the increasingly pervasive availability of fine-grained event data about business process executions, the problem of predictive process monitoring has received substantial attention in the past years... In particular, a considerable number of methods have been put forward to address the problem of outcome-oriented predictive process monitoring, which refers to classifying each ongoing case of a process according to a given set of possible categorical outcomes - e.g., Will the customer complain or not? Will an order be delivered, canceled or withdrawn? Unfortunately, different authors have used different datasets, experimental settings, evaluation measures and baselines to assess their proposals, resulting in poor comparability and an unclear picture of the relative merits and applicability of different methods. To address this gap, this article presents a systematic review and taxonomy of outcome-oriented predictive process monitoring methods, and a comparative experimental evaluation of eleven representative methods using a benchmark covering 24 predictive process monitoring tasks based on nine real-life event logs. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here