Outliagnostics: Visualizing Temporal Discrepancy in Outlying Signatures of Data Entries

30 Oct 2019  ·  Vung Pham, Tommy Dang ·

This paper presents an approach to analyzing two-dimensional temporal datasets focusing on identifying observations that are significant in calculating the outliers of a scatterplot. We also propose a prototype, called Outliagnostics, to guide users when interactively exploring abnormalities in large time series. Instead of focusing on detecting outliers at each time point, we monitor and display the discrepant temporal signatures of each data entry concerning the overall distributions. Our prototype is designed to handle these tasks in parallel to improve performance. To highlight the benefits and performance of our approach, we illustrate and validate the use of Outliagnostics on real-world datasets of various sizes in different parallelism configurations. This work also discusses how to extend these ideas to handle time series with a higher number of dimensions and provides a prototype for this type of datasets.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here