Overcoming Catastrophic Forgetting via Hessian-free Curvature Estimates

ICLR 2020 Anonymous

Learning neural networks with gradient descent over a long sequence of tasks is problematic as their fine-tuning to new tasks overwrites the network weights that are important for previous tasks. This leads to a poor performance on old tasks – a phenomenon framed as catastrophic forgetting... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet