Overlapping Trace Norms in Multi-View Learning

24 Apr 2014  ·  Behrouz Behmardi, Cedric Archambeau, Guillaume Bouchard ·

Multi-view learning leverages correlations between different sources of data to make predictions in one view based on observations in another view. A popular approach is to assume that, both, the correlations between the views and the view-specific covariances have a low-rank structure, leading to inter-battery factor analysis, a model closely related to canonical correlation analysis... We propose a convex relaxation of this model using structured norm regularization. Further, we extend the convex formulation to a robust version by adding an l1-penalized matrix to our estimator, similarly to convex robust PCA. We develop and compare scalable algorithms for several convex multi-view models. We show experimentally that the view-specific correlations are improving data imputation performances, as well as labeling accuracy in real-world multi-label prediction tasks. read more

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here