Overparameterization of deep ResNet: zero loss and mean-field analysis

30 May 2021  ·  Zhiyan Ding, Shi Chen, Qin Li, Stephen Wright ·

Finding parameters in a deep neural network (NN) that fit training data is a nonconvex optimization problem, but a basic first-order optimization method (gradient descent) finds a global optimizer with perfect fit (zero-loss) in many practical situations. We examine this phenomenon for the case of Residual Neural Networks (ResNet) with smooth activation functions in a limiting regime in which both the number of layers (depth) and the number of weights in each layer (width) go to infinity. First, we use a mean-field-limit argument to prove that the gradient descent for parameter training becomes a gradient flow for a probability distribution that is characterized by a partial differential equation (PDE) in the large-NN limit. Next, we show that under certain assumptions, the solution to the PDE converges in the training time to a zero-loss solution. Together, these results suggest that the training of the ResNet gives a near-zero loss if the ResNet is large enough. We give estimates of the depth and width needed to reduce the loss below a given threshold, with high probability.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods