Overview of Abusive and Threatening Language Detection in Urdu at FIRE 2021

With the growth of social media platform influence, the effect of their misuse becomes more and more impactful. The importance of automatic detection of threatening and abusive language can not be overestimated. However, most of the existing studies and state-of-the-art methods focus on English as the target language, with limited work on low- and medium-resource languages. In this paper, we present two shared tasks of abusive and threatening language detection for the Urdu language which has more than 170 million speakers worldwide. Both are posed as binary classification tasks where participating systems are required to classify tweets in Urdu into two classes, namely: (i) Abusive and Non-Abusive for the first task, and (ii) Threatening and Non-Threatening for the second. We present two manually annotated datasets containing tweets labelled as (i) Abusive and Non-Abusive, and (ii) Threatening and Non-Threatening. The abusive dataset contains 2400 annotated tweets in the train part and 1100 annotated tweets in the test part. The threatening dataset contains 6000 annotated tweets in the train part and 3950 annotated tweets in the test part. We also provide logistic regression and BERT-based baseline classifiers for both tasks. In this shared task, 21 teams from six countries registered for participation (India, Pakistan, China, Malaysia, United Arab Emirates, and Taiwan), 10 teams submitted their runs for Subtask A, which is Abusive Language Detection and 9 teams submitted their runs for Subtask B, which is Threatening Language detection, and seven teams submitted their technical reports. The best performing system achieved an F1-score value of 0.880 for Subtask A and 0.545 for Subtask B. For both subtasks, m-Bert based transformer model showed the best performance.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.