Overview of the VLSP 2022 -- Abmusu Shared Task: A Data Challenge for Vietnamese Abstractive Multi-document Summarization

27 Nov 2023  ·  Mai-Vu Tran, Hoang-Quynh Le, Duy-Cat Can, Quoc-An Nguyen ·

This paper reports the overview of the VLSP 2022 - Vietnamese abstractive multi-document summarization (Abmusu) shared task for Vietnamese News. This task is hosted at the 9$^{th}$ annual workshop on Vietnamese Language and Speech Processing (VLSP 2022). The goal of Abmusu shared task is to develop summarization systems that could create abstractive summaries automatically for a set of documents on a topic. The model input is multiple news documents on the same topic, and the corresponding output is a related abstractive summary. In the scope of Abmusu shared task, we only focus on Vietnamese news summarization and build a human-annotated dataset of 1,839 documents in 600 clusters, collected from Vietnamese news in 8 categories. Participated models are evaluated and ranked in terms of \texttt{ROUGE2-F1} score, the most typical evaluation metric for document summarization problem.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods