PAC learning with stable and private predictions

24 Nov 2019Yuval DaganVitaly Feldman

We study binary classification algorithms for which the prediction on any point is not too sensitive to individual examples in the dataset. Specifically, we consider the notions of uniform stability (Bousquet and Elisseeff, 2001) and prediction privacy (Dwork and Feldman, 2018)... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet