PAMI: partition input and aggregate outputs for model interpretation

7 Feb 2023  ·  Wei Shi, Wentao Zhang, Weishi Zheng, Ruixuan Wang ·

There is an increasing demand for interpretation of model predictions especially in high-risk applications. Various visualization approaches have been proposed to estimate the part of input which is relevant to a specific model prediction. However, most approaches require model structure and parameter details in order to obtain the visualization results, and in general much effort is required to adapt each approach to multiple types of tasks particularly when model backbone and input format change over tasks. In this study, a simple yet effective visualization framework called PAMI is proposed based on the observation that deep learning models often aggregate features from local regions for model predictions. The basic idea is to mask majority of the input and use the corresponding model output as the relative contribution of the preserved input part to the original model prediction. For each input, since only a set of model outputs are collected and aggregated, PAMI does not require any model detail and can be applied to various prediction tasks with different model backbones and input formats. Extensive experiments on multiple tasks confirm the proposed method performs better than existing visualization approaches in more precisely finding class-specific input regions, and when applied to different model backbones and input formats. The source code will be released publicly.

PDF Abstract
No code implementations yet. Submit your code now



Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here