Pandemic Literature Search: Finding Information on COVID-19
Finding information related to a pandemic of a novel disease raises new challenges for information seeking and retrieval, as the new information becomes available gradually. We investigate how to better rank information for pandemic information retrieval. We experiment with different ranking algorithms and propose a novel end-to-end method for neural retrieval, and demonstrate its effectiveness on the TREC COVID search. This work could lead to a search system that aids scientists, clinicians, policymakers and others in finding reliable answers from the scientific literature.
PDF Abstract