Parallel Active Subspace Decomposition for Scalable and Efficient Tensor Robust Principal Component Analysis

28 Dec 2017  ·  Jonathan Q. Jiang, Michael K. Ng ·

Tensor robust principal component analysis (TRPCA) has received a substantial amount of attention in various fields. Most existing methods, normally relying on tensor nuclear norm minimization, need to pay an expensive computational cost due to multiple singular value decompositions (SVDs) at each iteration. To overcome the drawback, we propose a scalable and efficient method, named Parallel Active Subspace Decomposition (PASD), which divides the unfolding along each mode of the tensor into a columnwise orthonormal matrix (active subspace) and another small-size matrix in parallel. Such a transformation leads to a nonconvex optimization problem in which the scale of nulcear norm minimization is generally much smaller than that in the original problem. Furthermore, we introduce an alternating direction method of multipliers (ADMM) method to solve the reformulated problem and provide rigorous analyses for its convergence and suboptimality. Experimental results on synthetic and real-world data show that our algorithm is more accurate than the state-of-the-art approaches, and is orders of magnitude faster.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here