Parallel Bayesian Global Optimization of Expensive Functions

16 Feb 2016  ·  Jialei Wang, Scott C. Clark, Eric Liu, Peter I. Frazier ·

We consider parallel global optimization of derivative-free expensive-to-evaluate functions, and propose an efficient method based on stochastic approximation for implementing a conceptual Bayesian optimization algorithm proposed by Ginsbourger et al. (2007). At the heart of this algorithm is maximizing the information criterion called the "multi-points expected improvement'', or the q-EI. To accomplish this, we use infinitessimal perturbation analysis (IPA) to construct a stochastic gradient estimator and show that this estimator is unbiased. We also show that the stochastic gradient ascent algorithm using the constructed gradient estimator converges to a stationary point of the q-EI surface, and therefore, as the number of multiple starts of the gradient ascent algorithm and the number of steps for each start grow large, the one-step Bayes optimal set of points is recovered. We show in numerical experiments that our method for maximizing the q-EI is faster than methods based on closed-form evaluation using high-dimensional integration, when considering many parallel function evaluations, and is comparable in speed when considering few. We also show that the resulting one-step Bayes optimal algorithm for parallel global optimization finds high-quality solutions with fewer evaluations than a heuristic based on approximately maximizing the q-EI. A high-quality open source implementation of this algorithm is available in the open source Metrics Optimization Engine (MOE).

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods