Parallel implementation of high-fidelity multi-qubit gates with neutral atoms

16 Aug 2019  ·  Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Omran, Tout T. Wang, Sepehr Ebadi, Hannes Bernien, Markus Greiner, Vladan Vuletić, Hannes Pichler, Mikhail D. Lukin ·

We report the implementation of universal two- and three-qubit entangling gates on neutral atom qubits encoded in long-lived hyperfine ground states. The gates are mediated by excitation to strongly interacting Rydberg states, and are implemented in parallel on several clusters of atoms in a one-dimensional array of optical tweezers. Specifically, we realize the controlled-phase gate, enacted by a novel, fast protocol involving only global coupling of two qubits to Rydberg states. We benchmark this operation by preparing Bell states with fidelity $\mathcal{F} \ge 95.0(2)\%$, and extract gate fidelity $\ge 97.4(3)\%,$ averaged across five atom pairs. In addition, we report a proof-of-principle implementation of the three-qubit Toffoli gate, in which two control atoms simultaneously constrain the behavior of one target atom. These experiments demonstrate key ingredients for high-fidelity quantum information processing in a scalable neutral atom platform.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Quantum Physics Quantum Gases