Parallelizable Stack Long Short-Term Memory

WS 2019 Shuoyang DingPhilipp Koehn

Stack Long Short-Term Memory (StackLSTM) is useful for various applications such as parsing and string-to-tree neural machine translation, but it is also known to be notoriously difficult to parallelize for GPU training due to the fact that the computations are dependent on discrete operations. In this paper, we tackle this problem by utilizing state access patterns of StackLSTM to homogenize computations with regard to different discrete operations... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet