Parameter Efficient Mamba Tuning via Projector-targeted Diagonal-centric Linear Transformation

21 Nov 2024  ·  Seokil Ham, Hee-Seon Kim, Sangmin Woo, Changick Kim ·

Despite the growing interest in Mamba architecture as a potential replacement for Transformer architecture, parameter-efficient fine-tuning (PEFT) approaches for Mamba remain largely unexplored. In our study, we introduce two key insights-driven strategies for PEFT in Mamba architecture: (1) While state-space models (SSMs) have been regarded as the cornerstone of Mamba architecture, then expected to play a primary role in transfer learning, our findings reveal that Projectors -- not SSMs -- are the predominant contributors to transfer learning, and (2) Based on our observation that adapting pretrained Projectors to new tasks can be effectively approximated through a near-diagonal linear transformation, we propose a novel PEFT method specialized to Mamba architecture: Projector-targeted Diagonal-centric Linear Transformation (ProDiaL). ProDiaL focuses on optimizing only diagonal-centric linear transformation matrices, without directly fine-tuning the pretrained Projector weights. This targeted approach allows efficient task adaptation, utilizing less than 1% of the total parameters, and exhibits strong performance across both vision and language Mamba models, highlighting its versatility and effectiveness.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods