Parameter Sharing Methods for Multilingual Self-Attentional Translation Models

In multilingual neural machine translation, it has been shown that sharing a single translation model between multiple languages can achieve competitive performance, sometimes even leading to performance gains over bilingually trained models. However, these improvements are not uniform; often multilingual parameter sharing results in a decrease in accuracy due to translation models not being able to accommodate different languages in their limited parameter space... (read more)

PDF Abstract WS 2018 PDF WS 2018 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper