Parametric Information Bottleneck to Optimize Stochastic Neural Networks

ICLR 2018  ·  Thanh T. Nguyen, Jaesik Choi ·

In this paper, we present a layer-wise learning of stochastic neural networks (SNNs) in an information-theoretic perspective. In each layer of an SNN, the compression and the relevance are defined to quantify the amount of information that the layer contains about the input space and the target space, respectively. We jointly optimize the compression and the relevance of all parameters in an SNN to better exploit the neural network's representation. Previously, the Information Bottleneck (IB) framework (\cite{Tishby99}) extracts relevant information for a target variable. Here, we propose Parametric Information Bottleneck (PIB) for a neural network by utilizing (only) its model parameters explicitly to approximate the compression and the relevance. We show that, as compared to the maximum likelihood estimate (MLE) principle, PIBs : (i) improve the generalization of neural networks in classification tasks, (ii) push the representation of neural networks closer to the optimal information-theoretical representation in a faster manner.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here