Paranoid Transformer: Reading Narrative of Madness as Computational Approach to Creativity
This papers revisits the receptive theory in context of computational creativity. It presents a case study of a Paranoid Transformer - a fully autonomous text generation engine with raw output that could be read as the narrative of a mad digital persona without any additional human post-filtering. We describe technical details of the generative system, provide examples of output and discuss the impact of receptive theory, chance discovery and simulation of fringe mental state on the understanding of computational creativity.
PDF AbstractTasks
Datasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.