Parkinson’s Disease EMG Signal Prediction Using Neural Networks

This paper proposes a comparison between different neural network models, using multilayer perceptron (MLPs) and recurrent neural network (RNN) models, for predicting Parkinson's disease electromyography (EMG) signals, to anticipate resulting resting tremor patterns. The experimental results indicate that the proposed models can adapt to different frequencies and amplitudes of tremor, and provide reasonable predictions for both EMG envelopes and EMG raw signals. Therefore, one could use these models as input for a control strategy for functional electrical stimulation (FES) devices used on tremor suppression, by dynamically predicting and improving FES control parameters based on tremor forecast.



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.