Parsing Videos of Actions with Segmental Grammars

CVPR 2014 Hamed PirsiavashDeva Ramanan

Real-world videos of human activities exhibit temporal structure at various scales; long videos are typically composed out of multiple action instances, where each instance is itself composed of sub-actions with variable durations and orderings. Temporal grammars can presumably model such hierarchical structure, but are computationally difficult to apply for long video streams... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet