Particle Dual Averaging: Optimization of Mean Field Neural Network with Global Convergence Rate Analysis

NeurIPS 2021  ·  Atsushi Nitanda, Denny Wu, Taiji Suzuki ·

We propose the particle dual averaging (PDA) method, which generalizes the dual averaging method in convex optimization to the optimization over probability distributions with quantitative runtime guarantee. The algorithm consists of an inner loop and outer loop: the inner loop utilizes the Langevin algorithm to approximately solve for a stationary distribution, which is then optimized in the outer loop. The method can be interpreted as an extension of the Langevin algorithm to naturally handle nonlinear functional on the probability space. An important application of the proposed method is the optimization of neural network in the mean field regime, which is theoretically attractive due to the presence of nonlinear feature learning, but quantitative convergence rate can be challenging to obtain. By adapting finite-dimensional convex optimization theory into the space of measures, we not only establish global convergence of PDA for two-layer mean field neural networks under more general settings and simpler analysis, but also provide quantitative polynomial runtime guarantee. Our theoretical results are supported by numerical simulations on neural networks with reasonable size.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here