Particle Gibbs with Ancestor Sampling for Probabilistic Programs

27 Jan 2015  ·  Jan-Willem van de Meent, Hongseok Yang, Vikash Mansinghka, Frank Wood ·

Particle Markov chain Monte Carlo techniques rank among current state-of-the-art methods for probabilistic program inference. A drawback of these techniques is that they rely on importance resampling, which results in degenerate particle trajectories and a low effective sample size for variables sampled early in a program. We here develop a formalism to adapt ancestor resampling, a technique that mitigates particle degeneracy, to the probabilistic programming setting. We present empirical results that demonstrate nontrivial performance gains.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here