Particle Track Reconstruction using Geometric Deep Learning

15 Dec 2020  ·  Yogesh Verma, Satyajit Jena ·

Muons are the most abundant charged particles arriving at sea level originating from the decay of secondary charged pions and kaons. These secondary particles are created when high-energy cosmic rays hit the atmosphere interacting with air nuclei initiating cascades of secondary particles which led to the formation of extensive air showers (EAS). They carry essential information about the extra-terrestrial events and are characterized by large flux and varying angular distribution. To account for open questions and the origin of cosmic rays, one needs to study various components of cosmic rays with energy and arriving direction. Because of the close relation between muon and neutrino production, it is the most important particle to keep track of. We propose a novel tracking algorithm based on the Geometric Deep Learning approach using graphical structure to incorporate domain knowledge to track cosmic ray muons in our 3-D scintillator detector. The detector is modeled using the GEANT4 simulation package and EAS is simulated using CORSIKA (COsmic Ray SImulations for KAscade) with a focus on muons originating from EAS. We shed some light on the performance, robustness towards noise and double hits, limitations, and application of the proposed algorithm in tracking applications with the possibility to generalize to other detectors for astrophysical and collider experiments.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Data Analysis, Statistics and Probability High Energy Physics - Experiment