Partitioning Relational Matrices of Similarities or Dissimilarities using the Value of Information

28 Oct 2017  ·  Isaac J. Sledge, Jose C. Principe ·

In this paper, we provide an approach to clustering relational matrices whose entries correspond to either similarities or dissimilarities between objects. Our approach is based on the value of information, a parameterized, information-theoretic criterion that measures the change in costs associated with changes in information. Optimizing the value of information yields a deterministic annealing style of clustering with many benefits. For instance, investigators avoid needing to a priori specify the number of clusters, as the partitions naturally undergo phase changes, during the annealing process, whereby the number of clusters changes in a data-driven fashion. The global-best partition can also often be identified.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here